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Abstract
The necessity of computing integrals with complex weights over manifolds
with a large number of dimensions, e.g., in some field theoretical settings,
poses a problem for the use of Monte Carlo techniques. Here it is shown
that very general complex weight functions P(x) on R

d can be represented
by real and positive weights p(z) on C

d , in the sense that for any observable
f, 〈f (x)〉P = 〈f (z)〉p, f (z) being the analytical extension of f (x). The
construction is extended to arbitrary compact Lie groups.

PACS numbers: 02.70.−c, 11.15.Ha, 02.30.Cj, 02.50.Ng

1. Introduction

The computation of expectation values in statistical mechanics and in quantum field theory in
its functional integral formulation requires taking averages of functions with a large number of
variables. In the continuous case this means integration over manifolds with large dimensions.
In such cases standard numerical integration techniques are no longer efficient and one has to
resort to Monte Carlo methods. Unfortunately, in some applications of great practical interest
such as lattice quantum chromodynamics in the presence of a baryonic chemical potential
[1, 2], the Boltzmann weight to be used in the averages is not positive or even real. This fact
prevents a straightforward application of the Monte Carlo method in these cases.

For a (real and positive) probability density function (PDF) P(x), expectation values can
be estimated by a pure Monte Carlo method in which the points are independently sampled
from P(x). The dispersion in the estimate of 〈f 〉P in the pure Monte Carlo method is
σP (f )/

√
N , where σ 2

P (f ) is the variance of f and N is the number of independent sampling
points [3, 4]. If sampling P(x) is very costly it may be more convenient to use the so-called
reweighting method, in which an auxiliary PDF P0(x) is sampled instead, making use of the
identity

〈f 〉P =
〈
f PP −1

0

〉
P0〈

PP −1
0

〉
P0

. (1.1)

1751-8113/07/319399+14$30.00 © 2007 IOP Publishing Ltd Printed in the UK 9399

http://dx.doi.org/10.1088/1751-8113/40/31/016
http://stacks.iop.org/JPhysA/40/9399


9400 L L Salcedo

For a generic observable f (x) this method is less efficient as it suffers from the importance
sampling problem: less points fall in the relevant region (i.e., where P(x), rather than P0(x),
is large), and the dispersion σP (f )/

√
Neff increases. A typical signal of this problem is the

presence of large fluctuations in both the numerator and the denominator in (1.1) when P0(x)

and P(x) are too different.
Nevertheless, the reweighting method can be translated immediately to the cases in which

the weight function P(x) is complex. (With some abuse of language such complex density
functions are still referred to as PDFs.) A positive P0(x) is chosen (a standard choice being1

P0(x) = λ|P(x)|) and used to generate the samples. Although the importance sampling
problem is not well defined here in general (being P(x) complex sampling it is meaningless),
the same large fluctuation problem which appeared in the case of the positive P(x) is present
here as a sign (or rather phase) problem, since often the average of the phase, 〈P/|P |〉|P |, is
very small but not its variance2.

There are cases, however, where a sampling of a complex P(x) can be given a meaning.
A clear instance of this is a PDF defined on R such that P(x) = P0(x − ia), where P0(x) is
positive (for real x) and analytic on a region containing R and R − ia. Then for f (z) analytic
on a region containing R and R + ia, 〈f (x)〉P = 〈f (x + ia)〉P0 . In this case the Monte Carlo
method can be applied using as sampling points zk = xk + ia, k = 1, . . . , N , where the xk are
generated from P0(x), and taking as observable f (z) (the analytic extension of f (x)). This
example suggests a technique consisting of sampling the complex plane, or more generally
a suitable complexified version of the original manifold where the complex P(x) is defined,
using an appropriate real and positive p(z), and trade the computation of 〈f (x)〉P by that
of 〈f (z)〉p. In practice this program has been applied by means of the so-called complex
Langevin method [12, 13]. For positive P(x) this approach produces a random walk which
asymptotically samples the probability density function. This property is easily shown from
the associated Fokker–Planck equation of which P(x) is the stable stationary solution. The
stochastic differential equation can be applied to the complex case using P(z), the analytical
extension of P(x). For some P(x), it can be shown that the random walk will reach a stable
equilibrium which samples a certain p(z) with the correct expectation values [14]. In those
cases the method is very useful since then essentially the same local algorithms used in the
real case apply. Unfortunately, for many relevant complex P(x) there is no steady solution
or, if there is, it does not display the correct expectation values [15–31]. As shown in [27]
the latter problem arises from the fact that the Fokker–Planck equation admits more solutions
in the space of distributions than in the space of ordinary functions. However, the complex
Langevin method guarantees at most that the PDF obtained from projection of p(z) on the real
axis is a distributional solution of the Fokker–Planck equation, not that it should coincide with
the original P(x). In essence the problem is: in that approach everything depends on P(z)

and this function does not favor integration along the real axis from integration along many
other curves on the complex plane (which can be viewed as a real axis after an analytic change
of variables). Regrettably, unlike the real Langevin case, no practical criterion is known to
decide a priori whether a given P(x) will produce a steady random walk (rather than a state
that looks stationary on a finite time computer simulation) and if so, whether such steady
solution is really sampling the input PDF P(x). (See however [32, 33].)

Given the limited success of the complex Langevin method, a natural question is to what
extent a given complex weight can be represented at all by means of any suitable ordinary (i.e.,
positive) PDF on the complexified manifold. A partial answer was given in [34] where it was

1 Taking P0(x) to be proportional to |P(x)| needs not be the optimal choice in practice, see e.g. [5].
2 See [1, 2] for alternative techniques, such as Taylor expansion, in the context of lattice QCD and [6–11] for other
approaches to the complex action problem.
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shown that one-dimensional complex PDFs admit such representation. In [35] it was shown
that all complex weights on R

d of the form Gaussian times polynomial of any degree and in
any number of dimensions are also representable by positive PDFs on C

d . Since this set is
dense in L2(Rd), this suggests that representability is a quite general property. In the present
work we extend those results by proving representability for smooth complex PDFs on R

d ,
which are either rapidly decreasing at infinity or periodic. The latter case is then generalized
to smooth PDFs defined on any compact matrix Lie group manifold.

2. Representation for PDFs of the form charge-dipole pair

Let P(x) be the complex ‘probability’ density function for which we want to compute
expectation values of ‘observables’ f (x),

〈f 〉P :=
∫

dµ(x)P (x)f (x)∫
dµ(x)P (x)

. (2.1)

P and f are complex in general, dµ(x) is a positive measure and the normalization∫
dµ(x)P (x) is different from zero. A positive representation of P(x) is a real non-

negative probability density function p(z) defined on the complex extension of the original
real manifold, with some positive measure dµ(z), in such a way that

〈f 〉P = 〈f 〉p :=
∫

dµ(z)p(z)f (z)∫
dµ(z)p(z)

, (2.2)

where f (z) stands for the analytical extension of f (x). Of course, a precise definition requires
to specify the space of allowed test functions f . For a real manifold such as R

d , a usual choice
is that of the set of polynomials. For complex probabilities which are periodic (real manifold
equivalent to a torus), the natural test functions are of the form ein·x. In general, the larger the
set of test functions the smaller the number of representable complex probabilities. Hereafter
we will assume that P(x) and p(z) are normalized, i.e., the denominators in (2.1) and (2.2)
are unity.

The key idea of the construction is to decompose P(x) as a sum of simpler PDFs

P(x) =
∑

n

Pn(x) (2.3)

all of them with positive normalization, or, equivalently,

P(x) =
∑

n

wnPn(x), (2.4)

with normalized Pn and wn � 0, and then find positive and normalized representations pn(z)

for the Pn(x) so that

p(z) =
∑

n

wnpn(z) (2.5)

provides the desired positive representation of P(x).
A suitable choice is to take the Pn of the form Dirac delta distribution plus a derivative of

a Dirac delta. If P is viewed as a hypothetical (complex) charge distribution with positive total
charge, it can be decomposed as a sum of simpler distributions of the form positive charge
(delta distribution) plus a dipole (derivative of delta) at the same point, with complex dipolar
moment. In R

d this is

Q(x;h) = δ(x) + h · ∇δ(x), x ∈ R
d , h ∈ C

d . (2.6)
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As shown constructively in [35] such distribution admits a positive representation of the form
Gaussian times polynomial. A similar but simpler solution is considered here.

Let us start by considering the one-dimensional PDF:

Q1(x) = δ(x) + δ′(x), x ∈ R. (2.7)

It can be represented on the complex plane by the positive and normalized PDF

q1(z) = 1

8π

∣∣∣1 − z

2

∣∣∣2
e−|z/2|2 , z ∈ C, (2.8)

that is ∫
C

d2zq1(z)z
n =

∫
R

dxQ1(x)xn

= δn,0 − δn,1, n = 0, 1, 2, . . . , (2.9)

where d2z = d Re zd Imz is the Lebesgue measure on R
2. This can be checked by direct

computation using polar coordinates, or alternatively, writing q1 as

q1(z) =
(

1 +
∂

∂z
+

∂

∂z∗ + 2
∂

∂z

∂

∂z∗

)
g(z),

g(z) := 1

4π
e−|z/2|2 ,

(2.10)

integrating by parts and noting that 〈zn〉g = δn,0.
Now a positive representation of Q(x;h) is easily obtained as follows:

q(z;h) =
∫

C

d2z1 q1(z1)δ(z − z1h). (2.11)

(δ(z − z0) being the Dirac delta distribution at z0 of the measure d2dz.) Indeed,

〈f (z)〉qh
=

∫
C

d

d2dz f (z)q(z;h)

=
∫

C
d

d2dz f (z)

∫
C

d2z1 q1(z1)δ(z − z1h)

=
∫

C

d2z1 f (z1h)q1(z1)

=
∫

R

dx1 f (x1h)(δ(x1) + δ′(x1))

= f (0) − h · ∇f (0)

=
∫

R
d

ddx f (x)Q(x;h)

= 〈f (x)〉Qh
. (2.12)

In the fourth equality we have used that f (z1h) depends analytically on z1 and q1(z) is a
representation of Q1(x).

The support of the distribution q(z;h) is at most a plane, and Gaussian-like on that plane.
From the Monte Carlo point of view this is considerably more efficient than the solutions
presented in [35] which had a larger size (Gaussian-like with non-vanishing width in all 2d

directions).
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3. Periodic PDFs

Next let us apply this technique to find positive representations for periodic PDFs functions on
R

d . The advantage of the periodic case is that the manifold is effectively compact, topologically
a d-dimensional torus. Specifically, we take P(x) with period 1 in each direction,

P(x + n) = P(x), x ∈ R
d , n ∈ Z

d , (3.1)

and normalized to unity with measure dµ(x) = ddx on the d-dimensional torus T d = [0, 1]d

(suitably compactified). In addition, we assume P(x) to be a smooth (i.e. C∞) function on
the torus3. A positive representation of P(x) is a smooth non-negative function p(z) on C

d

which is periodic (in the real directions)

p(z + n) = p(z), z ∈ C
d , n ∈ Z

d , (3.2)

and such that 〈 e2π in·x〉P = 〈 e2π in·z〉p for all n ∈ Z
d , that is∫

T d

ddx P (x) e2π in·x =
∫

T̃ d

d2dz p(z) e2π in·z, n ∈ Z
d , (3.3)

where the integration manifold of z is the complexified torus T̃ d = [0, 1]d × R
d . This

manifold is non-compact in the imaginary direction. For subsequent use, we note that the
periodic version of Q(x;h),

Qp(x;h) =
∑
n∈Z

d

Q(x + n;h), (3.4)

admits the positive representation

qp(z;h) =
∑
n∈Z

d

q(z + n;h), (3.5)

the sum being convergent (as a distribution). All the functions considered, being periodic, are
well defined (single-valued) on T d or T̃ d .

We can decompose P(x) in the form

P(x) = P0(x) + ∇ ·F (x), (3.6)

where P0(x) is chosen to be everywhere strictly positive, smooth (on the torus) and normalized
to unity. A sensible choice is P0(x) = 1; however, we will keep the possibility of a more
general choice to maintain the analogy with the non-compact case, below. By Hodge’s
decomposition theorem [36], there is a complex vector field F (x) which is also smooth on
the torus (smooth and periodic on R

d ). Such F (x) is non-unique. A natural solution is just
the electric field-like solution: let

ρ(x) := P(x) − P0(x), (3.7)

then (3.6) becomes

∇ ·F (x) = ρ(x). (3.8)

The electric field-like solution is

F (x) = ∇�(x), (3.9)

where �(x) is a smooth periodic solution of

∇2�(x) = ρ(x). (3.10)

3 Smoothness is invoked to simplify the treatment. Likely the constructions presented here can be extended to
suitable spaces of distributions.
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More explicitly,

ρ(x) =
∑

n∈Z
d ,n �=0

ρn e2π in·x,

�(x) =
∑

n∈Z
d ,n �=0

1

(2π i)2

ρn

n2
e2π in·x,

F (x) =
∑

n∈Z
d ,n �=0

n

2π i

ρn

n2
e2π in·x.

(3.11)

Note that F (x) is smooth because ρ(x) is smooth (i.e., |ρn| decreases for large n faster that
any inverse power). ρ0 vanishes due to

∫
ddx ρ(x) = 0, since P(x) and P0(x) are both

normalized to unity.
Having a valid F (x), (3.6) can be rewritten as

P(x) =
∫

R
d

ddy P0(y)(δ(x − y) + H(y) · ∇δ(x − y)) (3.12)

with

H(y) = F (y)

P0(y)
. (3.13)

The vector field H(x) is also smooth on T d . In turn this can be rewritten as

P(x) =
∫

R
d

ddy P0(y)Q(x − y;H(y))

=
∫

T d

ddy P0(y)Qp(x − y;H(y)), (3.14)

where Qp(x;H(y)) is just Qp(x;h) of (3.4) with h = H(y). Therefore, P(x) has been
written as a sum of charge-dipole distributions of the form (2.6). A positive representation of
P(x) is thus readily found:

p(z) =
∫

T d

ddy P0(y)qp(z − y;H(y))

=
∫

R
d

ddy P0(y)q(z − y;H(y)), (3.15)

where qp(z;H(y)) or q(z;H(y)) are just qp(z;h) or q(z;h) with h = H(y). The positive
representation p(z) is also smooth and periodic on C

d and so smooth on T̃ d .

4. Positive representations for PDFs on compact Lie groups

Let us now consider the extension of the previous construction to Lie group manifolds. Such
manifolds appear often in applications such as lattice gauge theories. Specifically, as real
manifold we take a connected and compact Lie group G of dimension d, which for convenience
will be taken as a matrix group. Hence all elements are of the form g = exp(x ·T ), where
x ∈ R

d and the d matrices T define a basis of the d-dimensional Lie algebra. The complexified
manifold is the connected but non-compact Lie group G̃ = {g̃ = exp(z ·T ),z ∈ C

d}.
A compact Lie group G admits a two-sided invariant metric gµν which endows G with a
Riemannian manifold structure [37]. The metric can be normalized so that the corresponding
volume element, ddx

√
g, is the Haar measure of G normalized to unity [38]4. This measure

4 g = det gµν and xµ are just any local coordinates, not necessarily the normal coordinates appearing in ex·T .
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is used in the evaluation of expectation values. For expectation values on G̃ we also take its
Haar measure.

A natural set of test functions is that of arbitrary polynomials of the matrix elements of
g ∈ G, f (g) = f ({gij }). The analytical extension of these polynomials corresponds just to
replace g with g̃, i.e., f ({g̃ij }).

The construction of a positive representation p(g̃) of a smooth normalized complex PDF
P(g) on G is as follows. Let P0(g) be strictly positive, smooth and normalized (for instance
P0 = 1), then the difference P − P0 integrates to zero on G and, by Hodge decomposition in
a compact manifold, we can write (using differential geometry notation [36])

P(g) = P0(g) − d†F(g), (4.1)

where F(g) = Fµ(g) dxµ is a 1-form on G. Equivalently,

P(g) = P0(g) + ∇µFµ(g), (4.2)

where ∇µ is the covariant derivative on G as a Riemannian manifold, with the usual Levi-Civita
connection, and Fµ(g) = gµν(g)Fν(g). The smooth vector field Fµ(g) is not unique and the
electric field-like solution can be adopted, for instance, [36]:

Fµ(g) = ∇µ(∇2)−1(P (g) − P0(g)). (4.3)

Using (4.2) and upon integration by parts,

〈f (g)〉P =
∫

dµ(g)P (g)f (g)

=
∫

dµ(g)P0(g)(1 − Hµ(g)∂µ)f (g), (4.4)

with

Hµ(g) = P0(g)−1Fµ(g). (4.5)

Clearly, Hµ(g)∂µf (g) describes an infinitesimal point transformation, and this can be
implemented as an infinitesimal left translation by means of a smooth field H(g) taking values
on the Lie algebra

Hµ(g)∂µf (g) = d

dx1
f (ex1H(g)g)

∣∣∣∣
x1=0

. (4.6)

With the help of the distribution Q1(x1) in (2.7), the expression in (4.4) can then be rewritten
as

〈f (g)〉P =
∫

dµ(g)P0(g)

∫
R

dx1 Q1(x1)f (ex1H(g)g). (4.7)

Since the dependence on x1 in f is analytic, we can use the positive representation of Q1(x1)

on C, q1(z1), to write

〈f (g)〉P =
∫

dµ(g)P0(g)

∫
C

d2z1 q1(z1)f (ez1H(g)g). (4.8)

This allows us to express the expectation value using a positive representation on G̃,

〈f (g)〉P = 〈f (g̃)〉p :=
∫

dµ(g̃)p(g̃)f (g̃), (4.9)

with

p(g̃) =
∫

dµ(g)P0(g)q(g̃, g;H(g)) (4.10)
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and

q(g̃, g;H(g)) =
∫

C

d2z1 q1(z1)δ(e
z1H(g)g, g̃). (4.11)

Here δ(g̃0, g̃) denotes the Dirac delta distribution at g̃0 for the Haar measure dµ(g̃) on G̃. The
extension to non-connected G is obvious.

5. Positive representations for PDFs on R
d

For PDFs on R
d the previous construction based on a superposition of charge-dipole pairs

can also be carried out, but it is technically more involved due to the lack of compactness
of the real manifold. We will assume the normalized complex PDF P(x) to be in Schwartz
space, i.e. smooth (infinitely differentiable) and rapidly decreasing at infinity (P(x) and all its
derivatives go to zero faster than any inverse power of |x|). The space of test functions can
then be chosen as the set of polynomials of x.

We choose a suitable positive and normalized P0(x) and write P(x) as

P(x) = P0(x) + ∇ ·F (x). (5.1)

Proceeding formally we then obtain a positive representation with

p(z) =
∫

R
d

ddx P0(x)

∫
C

d2z1 q1(z1)δ(z − x − z1H(x)), (5.2)

with H(x) = F (x)/P0(x).
There is a number of issues to be considered in this construction, such as the existence

of a suitable P0(x) and of the vector field F (x), the convergence of p(z) as defined in (5.2),
since the integral is on a non-compact manifold, and finally, the convergence of the moments
|z|n of p(z) for all non-negative n.

Assuming for the moment that suitable P0(x) and F (x) exist, the two latter points will
be fulfilled a fortiori provided the set of integrals

In =
∫

C
d

d2dz p(z)|zn| (5.3)

exists, where zn := ∏d
µ=1 z

nµ

µ and nµ are non-negative integers. Equivalently, the integrals

In =
∫

R
d

ddx P0(x)

∫
C

d2z1 q1(z1)|(x + z1H(x))n| (5.4)

should be convergent. We will take P0(x) also in Schwartz space and momentarily assume
that H(x) is smooth. In this case the only problem of convergence may come from the
large |x| or large |z1| sectors of the integral. Since P0(x) and q1(z1) are rapidly decreasing,
convergence is ensured provided H(x) is bounded by a polynomial. This condition turns out
to be rather restrictive since it implies that F (x) should be rapidly decreasing and moreover
it should go to zero at a rate not much slower than P0(x) itself.

Since both P(x) and P0(x) are smooth and rapidly decreasing, so is their difference, ρ:

ρ(x) := P(x) − P0(x), (5.5)

and the equation on F (x) is

∇ ·F (x) = ρ(x). (5.6)

The electric field-like solution, (3.9), exists and is smooth, but unfortunately it will not be
rapidly decreasing at infinity, in general. Because ρ(x) is in Schwartz space so is its Fourier
transform, ρ̃(k). Then, (k/|k|2)ρ̃(k) is rapidly decreasing but not necessarily smooth at
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k = 0; correspondingly, its Fourier transform is smooth but not rapidly decreasing, in general.
Indeed, unless ρ(x) has radial symmetry, the electric field will have the (in three dimensions)
well-known multipolar contributions which fall as an inverse power for large x [39]. To find a
suitable F (x) it is better to view this quantity as (minus) a dipolar density so that its divergence
is the charge density ρ(x). Because the total charge carried by ρ(x) is zero, it should be
possible to build it as a superposition of dipoles with complex dipolar moment. Moreover, if
ρ(x) is smooth or rapidly decreasing or of compact support, it should be possible to choose
F (x) with the same properties (the support of F (x) being larger than that of ρ(x) in general).
A suitable solution is as follows:

F a(x) = −(x − a)

∫ ∞

1
dλ λd−1ρ(λ(x − a) + a), x �= a, (5.7)

where the basepoint a is an arbitrary point in R
d . Intuitively this solution corresponds to an

arrangement of linear chains of dipoles, all chains starting at a and ending at each of the points
in the support of ρ, in which each ‘positive’ charge of one dipole is canceled by the ‘negative’
one of the next dipole in the chain. The total charge at a equals that in ρ(x) which is zero.

It is immediate to verify that ∇ · F a(x) = ρ(x) for all x �= a. Also it is clear that F a(x)

is rapidly decreasing at infinity (or of compact support if ρ(x) is) and smooth at all points
except the basepoint. At x = a, the solution F a(x) will not be smooth in general, however
this problem is easily fixed by taking a smooth average over a,

F (x) = −
∫ ∞

1
dλ λd−1

∫
R

d

dda C(a)(x − a)ρ(λ(x − a) + a), (5.8)

where we choose the weighting function C(a) to be smooth, of compact support, positive
and normalized to unity. Upon taking the average over a, the Fourier transform F̃ (k) can be
shown to be rapidly decreasing, in addition to smooth, so F (x) belongs to Schwartz space5.

The remaining issue is whether P0(x) can be chosen so that H(x) = F (x)/P0(x) is
polynomially bounded. Since the discussion is rather technical, this is shown in the appendix.
Here we only note that P0(x) should not go to zero too quickly for large |x|, as compared to
P(x). Otherwise the falloff of ρ(x) and F (x) would be dominated by that of P(x) and the
ratio F (x)/P0(x) could fail to be bounded by a polynomial.

6. Alternative constructions

The positive representation of a given complex PDF is by no means unique [35]. For periodic
density functions we present here alternative positive representations to those studied in
section 3. They have the virtue of being quite localized on C

d or T̃ d . This is convenient for
their use in Monte Carlo integration since the localization decreases the fluctuations in the
average over samples.

The construction is based on decomposing the periodic and smooth P(x) as a weighted
sum (with positive weight) of simpler PDFs of the form

Pn(x) = 1 + An e2π in·x, n ∈ Z
d , n �= 0. (6.1)

5 Of course, here we are addressing the generic case. In many practical cases this complicated construction is not
needed. For instance, if ρ(x) is of the form Gaussian times polynomial, it is immediate, by going to Fourier space,
to find a valid F (x) which is also of the form Gaussian times polynomial.
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If the normalization of P(x) is positive such decomposition is clearly always possible after a
discrete Fourier decomposition. Pn(x) has expectation values

〈e−2π im·x〉Pn
=




1 for m = 0

An for m = n

0 otherwise.

, m ∈ Z
d (6.2)

Actually the parameter An is redundant. Indeed, the expectation values of two PDFs p(z)

and p′(z) = p(z + a) are related by

〈e−2π im·z〉p′ = e2π im·a〈e−2π im·z〉p, a ∈ C
d . (6.3)

Therefore, it is sufficient to find positive representations for An = 1, since other values are
generated by a translation (barring the trivial case An = 0):

Pn(x) = 1 + e2π in·x, n �= 0. (6.4)

Let pn(z), with z = x + iy, be a positive representation of Pn(x). Because pn(z) is also
periodic with respect to x, it can be decomposed in discrete Fourier modes, e2π ik·x. The
expectation values of e−2π im·z indicate that the Fourier modes k = 0 and k = n should be
present. The mode k = −n must also be present for pn(z) to be real. The minimum required
is thus

pn(z) = h0(y) + h(y) e2π in·x + h∗(y) e−2π in·x, z = x + iy, (6.5)

and h0(y) real. Furthermore,

h0(y) � 2|h(y)| (6.6)

ensures the positivity of pn(z).
A solution is easily found using the ansatz

h(y) = a1δ(y − y1) − a2δ(y − y2), a1, a2 � 0. (6.7)

At least two delta distributions with weights of opposite sign are required to satisfy
〈e2π in·z〉pn

= 0. Saturation of the bound provides h0(y) = 2|h(y)|. The remaining conditions
〈1〉pn

= 〈e−2π in·z〉pn
= 1 give the solution

pn(z) = 2e2πn·y1 cos2(πn · x)δ(y − y1) + 2e2πn·y2 sin2(πn ·x)δ(y − y2)

e2πn·y1 + e2πn·y2
, n �= 0,

(6.8)

where y1,y2 ∈ R
d are only constrained to satisfy

2 = e2πn·y1 − e2πn·y2 . (6.9)

The support of pn(z) is R
d + R

d (or rather T d + T d ). This is quite localized as compared
to C

d or T̃ d . The localization within this family of PDFs increases (meaning lower Shannon
entropy relative to T d + T d 6) by taking n · y2 → −∞ so that the branch y = y1 dominates
the density function. The limit does not exist, even in the weak sense, since the test functions
e−im·z are of rapid growth on C

d away from the real axis.

6 The Shannon entropy of a probability density function P relative to another PDF P0 is defined as 〈− log(P/P0)〉P .
The larger the entropy the less localized is the probability.
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7. Concluding remarks

We have shown that very general complex PDFs can be represented by positive representations
upon analytical extension of the original manifold. This allows us to sample them as required
in the Monte Carlo method. The existence of these positive representations was not granted
given the repeated failure of algorithms such as the complex Langevin approach when applied
to general complex weight functions. A virtue of our construction is that it does not depend
on the analytical extension of P(x) itself. In general one cannot expect P(z) to be well
behaved on the complex manifold. This problem affects severely the complex Langevin
approach. Nevertheless, it should be clear that our construction, as it stands, is more of formal
interest than of practical use. First, the normalization of P(x) is generally not known; the
normalization is needed to choose P0(x) and so to obtain the difference ρ(x). Second, given
ρ(x), F (x) is not easy to construct. In fact, in practical cases, such as large lattices, only
algorithms that are local (i.e., not much more than nearest neighbors) have a chance to be
viable. This does not seem to be the case of, say, (5.8).

Another limitation is related to importance sampling which was one of the main problems
appearing in the reweighting method, (1.1). Strictly speaking this problem does not exist
if a pure Monte Carlo method is applied to p(z). However, a lack of importance sampling
manifests itself as an enhancement in the fluctuations of averages over samples. Because
the positive representation p(z) is not unique, there are different representations of a given
P(x), all of them with the same expectation values on analytic functions (but of course
with different expectation values for arbitrary, non-analytic, test functions). For instance,
the convolution of a given representation p(z) with a positive function C(z) with radial
symmetry and rapidly decreasing at infinity yields a new representation p′(z) (this is because
analytic functions are invariant under such convolution) [35]. The new representation will be
wider, i.e., less localized, than the original one. As a consequence, although the expectation
values of (analytic) observables will be equal, 〈f 〉p = 〈f 〉p′ , the dispersion will be different,
being larger for p′(z). Therefore, it becomes crucial in the representation approach to find
representations as localized, with entropy as small, as possible.

This can be seen in another way. Equation (5.2) indicates that the Monte Carlo method
can be applied in the following manner. First, a sample of x is generated from P0(x), and
then, for each x the field H(x) is computed and a sample of z1 is generated from q1(z1)

to compute 〈f (x + z1H(x))〉q1 . This x-dependent average is then itself averaged over the
sample of P0(x) to finally yield 〈f (z)〉p. However, in most, if not all, cases it will be more
sensible to compute the average over q1 exactly,

〈f (x + z1H(x))〉q1 = f (x) − H(x) · ∇f (x), (7.1)

rather than using Monte Carlo. So a better approach is to directly compute

〈f 〉P = 〈f − H · ∇f 〉P0 . (7.2)

(Interestingly, this formula does not require the analytical extension of f (x).) Such an
approach is to be compared with the standard one, (1.1),

〈f 〉P = 〈
f + P −1

0 (P − P0)f
〉
P0

, (7.3)

where, as in (7.2), we have assumed P and P0 to be normalized (not the case in practice). The
two constructions are rather similar (formally H = P −1

0 ∇−1(P − P0)) so a priori there is no
compelling reason to expect that the importance sampling problem gets better in (7.2) than in
(7.3). (An exception would be perhaps the cases in which f is particularly flat, since then this
good property is enhanced by the derivative in (7.2).)
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Despite these critical remarks, it remains the fact that, as shown here, the representation
problem admits a solution for very general complex PDFs P(x). Clearly, representability is
a necessary condition for the success of any other approach based on analytical extension,
whatever the method used in the construction of the positive representation.

From the mathematical point of view, several interesting problems pose themselves. One
is finding more general construction methods, in addition to the one presented here based on
the charge-dipole decomposition. Another is carrying out the construction for more general
manifolds and more general complex PDFs. Also challenging is the problem of finding positive
representations of minimal entropy for a given P(x): as mentioned before, by convolution it
is always possible to increase the entropy, but there is no general mechanism to decrease it, so
a minimum value is to be expected. (A similar entropy minimization problem has been found
in a different context in [40].) If the positivity condition on p(z) is relaxed, a quite localized
representation is p(z) = P(x)δ(y). Quite likely, this is the optimum solution if P(x) is
positive. In the general case of complex P(x), imposing p(z) to be positive will probably
imply a greater delocalization on the complex manifold. Finally, one can try to extend the
representativity problem. In fact in our discussion we have made use of a map K from the
space of test functions f (x) to that of functions f̃ (z) by means of analytical extension, as
well as the adjoint map K† which is a projection from the set of PDFs p(z) on the complex
manifold to that of complex density P(x): K|f 〉 = |f̃ 〉, 〈K†p| = 〈P | (note that the map
p �→ P is single-valued although P �→ p is not). That is

〈f 〉P = 〈P |f 〉 = 〈K†p|f 〉 = 〈p|Kf 〉 = 〈p|f̃ 〉 = 〈f̃ 〉p. (7.4)

From this point of view, more general representations K could be sought which could be of
practical interest.
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Appendix. Polynomial growth of H(x)

Here we want to show that P0(x) can be chosen in such a way that H(x) is bounded by a
polynomial. We take it as evident that for any complex Schwartz function P ′ on R

d there is a
positive function P ′

0 such that (i) P ′
0 is in Schwartz space, (ii) P ′

0(x) � |P ′(x)| for all x ∈ R
d ,

and (iii) P ′
0 is a decreasing function, i.e., P ′

0(x1) � P ′
0(x2) if |x1| � |x2|.7 We apply this

property to the function P ′(x) := |x|2dP (x) and take P0(x) := |x|−2dP ′
0(x) for |x| � R,

for a sufficiently large R. The definition of P0(x) is completed in the region |x| < R so that it
is smooth and normalized. Therefore, for |x| � R, |P(x)| � P0(x) and

|ρ(x)| � 2P0(x), P0(y) � |x|2d

|y|2d
P0(x), |y| � |x|. (A.1)

7 To obtain P ′
0 consider the auxiliary function

P ′′
0 (x) = sup{|P ′(y)|, |y| � |x|}.

By construction P ′′
0 satisfies all conditions (i-iii), except perhaps the property of being smooth. It seems obvious that

P ′′
0 can be suitable smoothed out to obtain a valid P ′

0.
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(As in section 5, ρ = P − P0.) In order to use these inequalities we recall that in (5.8) the
support of the positive function C(a) is compact, so a lies inside a ball of some size RC ,
and moreover λ � 1. Thus the inequalities (A.1) apply at the point λ(x − a) + a provided
R > RC . This allows us to write

|F (x)| �
∫ ∞

1
dλ λd−1

∫
R

d

dda C(a)
2|x − a||x|2d

|λ(x − a) + a|2d
P0(x), |x| � R. (A.2)

On the other hand |λ(x − a) + a| � λ(|x| − |a|), hence

|F (x)| � 2
∫ ∞

1
dλ λ−d−1

∫
R

d

dda C(a)
|x − a||x|2d

(|x| − |a|)2d
P0(x)

� 2

d

(|x| + RC)|x|2d

(|x| − RC)2d
P0(x), |x| � R. (A.3)

As a consequence,

|F (x)| � k|x|P0(x), for |x| � R,

k = 2

d

1 + RC/R

(1 − RC/R)2d
,

(A.4)

and H(x) is bounded by k|x|.
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